2.3.1. SCPI server (MATLAB, LabVIEW, Scilab or Python)

../../_images/SCPI_web_lr.png

The Red Pitaya board can be controlled remotely over a LAN or wireless interface using MATLAB, LabVIEW, Scilab, or Python via the Red Pitaya SCPI (Standard Commands for Programmable Instrumentation) list of commands. The SCPI interface/environment is commonly used to control T&M instruments for development, research, or test automation purposes. SCPI uses a set of SCPI commands that are recognised by the instruments to enable specific actions to be taken (e.g., acquiring data from fast analog inputs, generating signals, and controlling other peripheries of the Red Pitaya platform). The SCPI commands are extremely useful when complex signal analysis is required. An SW environment such as MATLAB provides powerful data analysis tools and SCPI commands simple access to raw data acquired on the Red Pitaya board.

Features

  • Quickly write control routines and programs using MATLAB, LabVIEW, Scilab, or Python.

  • Use powerful data analysis tools like MATLAB, LabVIEW, Scilab, or Python to analyse raw signals acquired by the Red Pitaya board.

  • Write testing scripts and routines.

  • Incorporate your Red Pitaya and LabVIEW into testing and production lines.

  • Take quick measurements directly on your PC.

2.3.1.1. Quick start

Start the SCPI server. This is done simply by clicking on the SCPI server icon and starting the SCPI server. When the SCPI server is started, the IP address of your board will be shown. This IP address must be entered into your scripts. Starting the SCPI server can also be done manually via Terminal (see below).

To run an example, follow the instructions below:

  1. Go to your Red Pitaya main page and select the SCPI server in the Development section.

    ../../_images/scpi-homepage.png
    ../../_images/scpi-development.png
  2. Start the SCPI server by selecting the RUN button. Please note the IP of your Red Pitaya (192.168.178.100) board as it will be needed to connect to your board.

    ../../_images/scpi-app-run.png
    ../../_images/scpi-app-stop.png
  3. Follow the instructions below suitable for your environment.

    Note

    It is not possible to run SCPI commands or programs in parallel with web applications.

2.3.1.1.1. MATLAB

  1. Open MATLAB on your computer.

  2. In the MATLAB workspace, paste the code from the blink tutorial example.

  3. Replace the IP in the example with the IP of your Red Pitaya board.

  4. Hit RUN or F5 on your keyboard to run the code.

More examples of how to control Red Pitaya from MATLAB can be found here.

2.3.1.1.2. Python

The PyVISA library, in combination with the PyVISA-py backend, is used.

To install them, do:

$ sudo pip3 install pyvisa pyvisa-py

Note

To run the examples, you need Python version 3. Before running, double-check the Python versions. If the system has Python version 2.7, this version will be used by default.

$ python --version
Python 2.7.17

Then, in order to run the examples, specify explicitly the Python version.
$ python3.5 blink.py 192.168.178.108
  1. Open the blink tutorial and copy the code to your favourite text editor.

  2. Save the file to your working folder as blink.py, for example, examples_py. Copy and save the redpitaya_scpi.py script in the same folder as the blink.py example (in our case, examples_py).

    Note

    The redpitaya_scpi.py script is a standard script needed to establish the connection between your PC and the Red Pitaya board. The execution of your script will fail without this script being in the same folder as your Python script.

    ../../_images/scpi-examples.png
  3. Open the Terminal and navigate to the folder containing your Python script (examples_py), then type: Python blink.py IP, passing a Red Pitaya IP as an argument when calling an execution of the blink.py example. An example is given below, where 192.168.178.108 is the IP of the Red Pitaya board.

    cd /home/zumy/Desktop/exmples_py
    python blink.py 192.168.178.108
    
    ../../_images/scpi-example-cli.png

More examples of how to control Red Pitaya from MATLAB can be found here.

Note

Python examples can also be run directly from the RP device itself. To do so, first start the SCPI server and then use the local device IP: 127.0.0.1

2.3.1.1.3. LabVIEW

To install the Red Pitaya LabVIEW driver, download the Red_Pitaya_LabVIEW_Driver&Examples.zip file. Unpack it and copy the Red Pitaya folder to your LabVIEW installation instr.lib folder, e.g. C:/Program Files/National Instruments/LabVIEW 2010/instr.lib. When using the 64-bit LabVIEW version (mostly paid), Or here : C:/Program Files (x86)/National Instruments/LabVIEW 2020/instr.lib when using the 32-bit LabVIEW version, like the free Community Edition.

The Red Pitaya driver should appear after restarting LabVIEW in Block Diagram -> Instrument I/O -> Instr Drivers -> RedPitaya. Depending on your settings, instrument I/O may be hidden. Please consult LabVIEW Help on how to activate or deactivate those categories. You can access example VIs by going to:

  1. Help -> Find Examples…

  2. select the Search tab

  3. In the Enter keyword(s) field, type RedPitaya.

More examples of how to control Red Pitaya from LabVIEW can be found here.

2.3.1.1.4. SCILAB

To use the SCPI commands, you will need to set up Scilab sockets. The procedure is described below.

  1. Go to the Scilab download page and download and install Scilab for your OS.

  2. Go to the Scilab socket toolbox page and download the basic socket function for Scilab.

  3. Go to the extracted Scilab folder, then to the folder named contrib.

  4. Copy the socket_toolbox zip file to the contrib folder.

  5. Extract the socket_toolbox zip file inside the contrib folder.

  6. We no longer require the socket_toolbox zip file, so remove it.

  7. Go to the socket_toolbox folder.

  8. Open loader.sce with your Scilab and press RUN (grey run button on SCILAB editor GUI).

These last two steps must be executed each time you start Scilab. To install, you must have an internet connection. Running the examples is the same as on MATALB.

  1. In the MATLAB workspace, paste the code from the blink tutorial example.

  2. Replace the IP in the example with the IP of your Red Pitaya board.

  3. Press RUN to run the code.

Different code examples can be found here.

Note

Communicating with a SCPI server and working with web-based instruments at the same time can diminish the performance of your Red Pitaya. This is because the same resource is used for both tasks.

2.3.1.2. Starting SCPI server manually

Assuming you have successfully connected to your Red Pitaya board using these instructions these instructions, remotely connect using Putty on Windows machines or with SSH using Terminal on UNIX (macOSX/Linux) machines.

Connect to your Red Pitaya board via terminal on a Linux machine and start the SCPI server with the following command:

systemctl start redpitaya_scpi &
../../_images/scpi-ssh.png

2.3.1.3. List of supported SCPI commands

2.3.1.3.1. LEDs and GPIOs

Parameter options:

  • <dir> = {OUT,IN}

  • <gpio> = {{DIO0_P...DIO7_P}, {DIO0_N...DIO7_N}}

  • <led> = {LED0...LED8}

  • <pin> = {gpio, led}

  • <state> = {0,1}

Table of correlated SCPI and API commands for the Red Pitaya.

SCPI

API

DESCRIPTION

DIG:PIN:DIR <dir>,<gpio>
Examples:
DIG:PIN:DIR OUT,DIO0_N
DIG:PIN:DIR IN,DIO1_P

rp_DpinSetDirection

Set the direction of digital pins to output or input.

DIG:PIN <pin>,<state>
Examples:
DIG:PIN DIO0_N,1
DIG:PIN LED2,1

rp_DpinSetState

Set the state of digital outputs to 1 (HIGH) or 0 (LOW).

DIG:PIN? <pin> > <state>
Examples:
DIG:PIN? DIO0_N
DIG:PIN? LED2

rp_DpinGetState

Get state of digital inputs and outputs.

2.3.1.3.2. Analog Inputs and Outputs

Parameter options:

  • <ain> = {AIN0, AIN1, AIN2, AIN3}

  • <aout> = {AOUT0, AOUT1, AOUT2, AOUT3}

  • <pin> = {ain, aout}

  • <value> = {value in Volts}

SCPI

API

DESCRIPTION

ANALOG:PIN <pin>,<value>
Examples:
ANALOG:PIN AOUT2,1.34

rp_ApinSetValue

Set the analog voltage on the slow analog outputs.
The voltage range of slow analog outputs is: 0 - 1.8 V
ANALOG:PIN? <pin> > <value>
Examples:
ANALOG:PIN? AOUT2 > 1.34
ANALOG:PIN? AIN1 > 1.12

rp_ApinGetValue

Read the analog voltage from the slow analog inputs.
The voltage range of slow analog inputs is: 0 - 3.3 V

2.3.1.3.3. Signal Generator

Parameter options:

  • <n> = {1,2} (set channel OUT1 or OUT2)

  • <state> = {ON,OFF} Default: OFF

  • <frequency> = {0Hz...62.5e6Hz} Default: 1000

  • <func> = {SINE, SQUARE, TRIANGLE, SAWU, SAWD, PWM, ARBITRARY, DC, DC_NEG} Default: SINE

  • <amplitude> = {-1V...1V} Default: 1 for SIGNALlab 250-12 this value {-5V…5V}

  • <offset> = {-1V...1V} Default: 0

  • <phase> = {-360deg ... 360deg} Default: 0

  • <dcyc> = {0...1} Default: 0.5 Where 1 corresponds to 100%

  • <array> = {value1, ...} max. 16384 values, floats in the range -1 to 1

  • <burst> = {BURST , CONTINUOUS} Default: CONTINUOUS

  • <count> = {1...50000} , Default: 1

  • <time> = {1µs-500s} Value in µs.

  • <trigger> = {EXT_PE, EXT_NE, INT, GATED}

    • EXT = External

    • INT = Internal

    • GATED = gated busts

SCPI

API

DESCRIPTION

OUTPUT:STATE <state>
Examples:
OUTPUT:STATE ON
rp_GenOutEnableSync

Runs or Stops both channels synchronously.

OUTPUT<n>:STATE <state>
Examples:
OUTPUT1:STATE ON
rp_GenOutEnable
rp_GenOutDisable

Disable or enable fast analog outputs.

SOUR<n>:FREQ:FIX <frequency>
Examples:
SOUR2:FREQ:FIX 100000

rp_GenFreq

Set the frequency of fast analog outputs.

SOUR<n>:FUNC <func>
Examples:
SOUR2:FUNC TRIANGLE

rp_GenWaveform

Set the waveform of fast analog outputs.

SOUR<n>:VOLT <amplitude>
Examples:
SOUR2:VOLT 0.5

rp_GenAmp

Set the amplitude voltage of fast analog outputs in Volts.
Amplitude + offset value must be less than the maximum
output range ± 1V.
SOUR<n>:VOLT:OFFS <offset>
Examples:
SOUR1:VOLT:OFFS 0.2

rp_GenOffset

Set the offset voltage of fast analog outputs in Volts
Amplitude + offset value must be less than the maximum
output range ± 1V.
SOUR<n>:PHAS <phase>
Examples:
SOUR2:PHAS 30

rp_GenPhase

Set the phase of fast analog outputs.

SOUR<n>:DCYC <par>
Examples:
SOUR1:DCYC 0.2

rp_GenDutyCycle

Set the duty cycle of the PWM waveform.

SOUR<n>:TRAC:DATA:DATA <array>
Examples:
SOUR1:TRAC:DATA:DATA
1,0.5,0.2

rp_GenArbWaveform

Import data for arbitrary waveform generation.

SOUR<n>:BURS:STAT <burst>
Examples:
SOUR1:BURS:STAT BURST
SOUR1:BURS:STAT CONTINUOUS

rp_GenMode

Enable or disable burst (pulse) mode.
Red Pitaya will generate R bursts with N signal periods
before stopping. P is the time between bursts.
SOUR<n>:BURS:NCYC <count>
Examples:
SOUR1:BURS:NCYC 3

rp_GenBurstCount

Set the number of periods in a burst (N).

SOUR<n>:BURS:NOR <count>
Examples:
SOUR1:BURS:NOR 5

rp_GenBurstRepetitions

Set the number of repeated bursts (R) (65536 == INF Repetitions)

SOUR<n>:BURS:INT:PER <time>
Examples:
SOUR1:BURS:INT:PER 1000000

rp_GenBurstPeriod

Set the duration of a single burst in microseconds (P).
This includes the signal and delay.
SOUR<n>:TRIG:SOUR <trigger>
Examples:
SOUR1:TRIG:SOUR EXT_PE

rp_GenTriggerSource

Set the trigger source for the selected signal.

SOUR:TRIG:INT

Examples:
SOUR:TRIG:INT

rp_GenTrigger

Triggers both sources/channels immediately.
SOUR<n>:TRIG:INT

Examples:
SOUR1:TRIG:INT

rp_GenTrigger

Triggers the selected source immediately for the selected channel.
GEN:RST

rp_GenReset

Reset the generator to default settings.

PHAS:ALIGN

rp_GenSynchronise

Align the output phases of both channels.

Note

For STEMlab 125-14 4-Input, these commands are not applicable.

2.3.1.3.4. Acquire

2.3.1.3.4.1. Control

SCPI

API

DESCRIPTION

ACQ:START

rp_AcqStart

Start the acquisition.

ACQ:STOP

rp_AcqStop

Stop the acquisition.

ACQ:RST

rp_AcqReset

Stops the acquisition and sets all parameters to default values.

2.3.1.3.4.2. Sampling rate & decimation

Parameter options:

  • <decimation> = {1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384,32768,65536} Default: 1

  • <average> = {OFF,ON} Default: ON

SCPI

API

DESCRIPTION

ACQ:DEC <decimation>
Example:
ACQ:DEC 4

rp_AcqSetDecimation

Set the decimation factor.

ACQ:DEC? > <decimation>
Example:
ACQ:DEC? > 1

rp_AcqGetDecimation

Get the decimation factor.

ACQ:AVG <average>

rp_AcqSetAveraging

Enable/disable averaging.
Each sample is the average of skipped samples if decimation > 1.
ACQ:AVG? > <average>
Example:
ACQ:AVG? > ON

rp_AcqGetAveraging

Get the averaging status.

2.3.1.3.5. Trigger

Parameter options:

  • <n> = {1,2} (set channel IN1 or IN2)

  • <source> = {DISABLED, NOW, CH1_PE, CH1_NE, CH2_PE, CH2_NE, EXT_PE, EXT_NE, AWG_PE, AWG_NE} Default: DISABLED

  • <status> = {WAIT, TD}

  • <time> = {value in ns}

  • <count> = {value in samples}

  • <gain> = {LV, HV}

  • <level> = {value in V}

  • <mode> = {AC,DC}

Note

For STEMlab 125-14 4-Input <n> = {1,2,3,4} (set channel IN1, IN2, IN3 or IN4)

Note

For STEMlab 125-14 4-Input <source> = {DISABLED, NOW, CH1_PE, CH1_NE, CH2_PE, CH2_NE, CH3_PE, CH3_NE, CH4_PE, CH4_NE, EXT_PE, EXT_NE, AWG_PE, AWG_NE} Default: DISABLED

SCPI

API

DESCRIPTION

ACQ:TRIG <source>
Example:
ACQ:TRIG CH1_PE

rp_AcqSetTriggerSrc

Disable triggering, trigger immediately or set trigger source & edge.

ACQ:TRIG:STAT?
Example:
ACQ:TRIG:STAT? > WAIT

rp_AcqGetTriggerState

Get trigger status. If DISABLED -> TD else WAIT.

ACQ:TRIG:FILL?
Example:
ACQ:TRIG:FILL? > 1

rp_AcqGetBufferFillState

Returns 1 if the buffer is full of data. Otherwise returns 0.
(IN FUTURE BETA VERSION)
ACQ:TRIG:DLY <count>
Example:
ACQ:TRIG:DLY 2314

rp_AcqSetTriggerDelay

Set the trigger delay in samples.

ACQ:TRIG:DLY? > <count>
Example:
ACQ:TRIG:DLY? > 2314

rp_AcqGetTriggerDelay

Get the trigger delay in samples.

ACQ:TRIG:DLY:NS <time>
Example:
ACQ:TRIG:DLY:NS 128

rp_AcqSetTriggerDelayNs

Set the trigger delay in ns.

ACQ:TRIG:DLY:NS? > <time>
Example:
ACQ:TRIG:DLY:NS? > 128ns

rp_AcqGetTriggerDelayNs

Get the trigger delay in ns.

ACQ:SOUR<n>:GAIN <gain>

Example:
ACQ:SOUR1:GAIN LV

rp_AcqSetGain

Set the gain settings to HIGH or LOW.
(For SIGNALlab 250-12 this is 1:20 and 1:1 attenuator).
This gain refers to jumper settings on Red Pitaya fast analog inputs.
ACQ:SOUR<n>:GAIN? > <gain>

Example:
ACQ:SOUR1:GAIN? > HV

rp_AcqGetGain

Get the gain setting.
(For SIGNALlab 250-12 this is 1:20 and 1:1 attenuator).
ACQ:SOUR<n>:COUP <mode>
Example:
ACQ:SOUR1:COUP AC

rp_AcqSetAC_DC

Sets the AC / DC modes of input. (Only SIGNALlab 250-12)

ACQ:SOUR<n>:COUP? > <mode>
Example:
ACQ:SOUR1:COUP? > AC

rp_AcqGetAC_DC

Get the AC / DC modes of input. (Only SIGNALlab 250-12)

ACQ:TRIG:LEV <level>
Example:
ACQ:TRIG:LEV 0.125 V

rp_AcqSetTriggerLevel

Set the trigger level in V.

ACQ:TRIG:LEV? > level
Example:
ACQ:TRIG:LEV? > 0.123 V

rp_AcqGetTriggerLevel

Get the trigger level in V.

ACQ:TRIG:EXT:LEV <level>
Example:
ACQ:TRIG:EXT:LEV 1

rp_AcqSetTriggerLevel

Set the external trigger level in V. (Only SIGNALlab 250-12)

ACQ:TRIG:EXT:LEV? > level
Example:
ACQ:TRIG:EXT:LEV? > 1

rp_AcqGetTriggerLevel

Get the external trigger level in V. (Only SIGNALlab 250-12)

2.3.1.3.6. Data pointers

Parameter options:

  • <pos> = {position inside circular buffer}

SCPI

API

DESCRIPTION

ACQ:WPOS? > pos
Example:
ACQ:WPOS? > 1024

rp_AcqGetWritePointer

Returns the current position of the write pointer.

ACQ:TPOS? > pos
Example:
ACQ:TPOS? > 512

rp_AcqGetWritePointerAtTrig

Returns the position where the trigger event appeared.

2.3.1.3.7. Data read

  • <n> = {1,2} (set channel IN1 or IN2)

  • <units> = {RAW, VOLTS}

  • <format> = {BIN, ASCII} Default ASCII

  • <start_pos> = {0,1,...,16384}

  • <stop_pos>  = {0,1,...,16384}

  • <m>  = {0,1,...,16384}

Note

For STEMlab 125-14 4-Input <n> = {1,2,3,4} (set channel IN1, IN2, IN3 or IN4)

SCPI

API

DESCRIPTION

ACQ:DATA:UNITS <units>
Example:
ACQ:DATA:UNITS RAW

rp_AcqScpiDataUnits

Select units in which the acquired data will be returned.

ACQ:DATA:UNITS? > <units>
Example:
ACQ:DATA:UNITS? > RAW

rp_AcqGetScpiDataUnits

Get units in which the acquired data will be returned.

ACQ:DATA:FORMAT <format>
Example:
ACQ:DATA:FORMAT ASCII

rp_AcqScpiDataFormat

Select the format in which the acquired data will be returned.

ACQ:SOUR<n>:DATA:STA:END?
<start_pos>,<end_pos>
Example:
ACQ:SOUR1:DATA:STA:END? 10,13 >
{123,231,-231}
rp_AcqGetDataPosRaw
rp_AcqGetDataPosV
Read samples from start to stop position.
<start_pos> = {0,1,...,16384}
<stop_pos>  = {0,1,...,16384}
ACQ:SOUR<n>:DATA:STA:N?
<start_pos>,<m>
Example:
ACQ:SOUR1:DATA:STA:N? 10,3 >
{1.2,3.2,-1.2}
rp_AcqGetDataRaw
rp_AcqGetDataV
Read m samples from the start position onwards.
ACQ:SOUR<n>:DATA?
Example:
ACQ:SOUR2:DATA? >
{1.2,3.2,...,-1.2}

rp_AcqGetOldestDataRaw
rp_AcqGetOldestDataV
Read the full buffer.
Starting from the oldest sample in the buffer (first sample after trigger delay).
The trigger delay is set to zero by default (in samples or in seconds).
If the trigger delay is set to zero, it will read the full buffer size starting
from the trigger.
ACQ:SOUR<n>:DATA:OLD:N? <m>
Example:
ACQ:SOUR2:DATA:OLD:N? 3 >
{1.2,3.2,-1.2}

rp_AcqGetOldestDataRaw
rp_AcqGetOldestDataV
Read m samples after the trigger delay, starting from the oldest sample
in the buffer (first sample after trigger delay).
The trigger delay is set to zero by default (in samples or in seconds).
If the trigger delay is set to zero, it will read m samples starting
from the trigger.
ACQ:SOUR<n>:DATA:LAT:N? <m>
Example:
ACQ:SOUR1:DATA:LAT:N? 3 >
{1.2,3.2,-1.2}
rp_AcqGetLatestDataRaw
rp_AcqGetLatestDataV
Read m samples before the trigger delay.
The trigger delay is set to zero by default (in samples or in seconds).
If the trigger delay is set to zero, it will read m samples before the trigger.
ACQ:BUF:SIZE? > <size>
Example:
ACQ:BUF:SIZE? > 16384

rp_AcqGetBufSize

Returns the buffer size.

2.3.1.3.8. UART

Parameter options:

  • <bits> = {CS6, CS7, CS8} Default: CS8

  • <stop> = {STOP1, STOP2} Default: STOP1

  • <parity> = {NONE, EVEN, ODD, MARK, SPACE} Default: NONE

  • <timeout> = {0...255} in (1/10 seconds) Default: 0

  • <speed> = {1200,2400,4800,9600,19200,38400,57600,115200,230400,576000,921000,1000000,1152000,1500000,2000000,2500000,3000000,3500000,4000000} Default: 9600

  • <data> = {XXX,... | #HXX,... | #QXXX,... | #BXXXXXXXX,... } Array of data separated comma

    • XXX = Dec format

    • #HXX = Hex format

    • #QXXX = Oct format

    • #BXXXXXXXX = Bin format

SCPI

API

DESCRIPTION

UART:INIT
Example:
UART:INIT

rp_UartInit

Initialises the API for working with UART.

UART:RELEASE
Example:
UART:RELEASE

rp_UartRelease

Releases all used resources.

UART:SETUP
Example:
UART:SETUP

rp_UartSetSettings

Applies specified settings to UART.

UART:BITS <bits>
Example:
UART:BITS CS7

rp_UartSetBits

Sets the character size in bits.

UART:BITS? > <bits>
Example:
UART:BITS? > CS7

rp_UartGetBits

Gets the character size in bits.

UART:SPEED <speed>
Example:
UART:SPEED 115200

rp_UartSetSpeed

Sets the speed of the UART connection.

UART:SPEED? > <speed>
Example:
UART:SPEED? > 115200

rp_UartGetSpeed

Gets the speed of the UART connection.

UART:STOPB <stop>
Example:
UART:STOPB STOP2

rp_UartSetStopBits

Sets the length of the stop bit.

UART:STOPB? > <stop>
Example:
UART:STOPB? > STOP2

rp_UartGetStopBits

Gets the length of the stop bit.

UART:PARITY <parity>
Example:
UART:PARITY ODD

rp_UartSetParityMode

Sets parity check mode.
- NONE = Disable parity check
- EVEN = Set even mode for parity
- ODD = Set odd mode for parity
- MARK = Set Always 1
- SPACE = Set Always 0
UART:PARITY? > <parity>
Example:
UART:PARITY? > ODD

rp_UartGetParityMode

Gets parity check mode.

UART:TIMEOUT <timeout>
Example:
UART:TIMEOUT 10

rp_UartSetTimeout

Sets the timeout for reading from UART. 0 - Disable timeout. 1 = 1/10 sec.
Example: 10 - 1 sec. Max timout: 25.5 sec
UART:TIMEOUT? > <timeout>
Example:
UART:TIMEOUT? > 10

rp_UartGetTimeout

Gets the timeout.

UART:WRITE<n> <data>
Example:
UART:WRITE5 1,2,3,4,5

rp_UartWrite

Writes data to UART. <n> - the length of data sent to UART.

UART:READ<n> > <data>
Example:
UART:READ5 > {1,2,3,4,5}

rp_UartRead

Reads data from UART. <n> - the length of data retrieved from UART.

2.3.1.3.9. SPI

Parameter options:

  • <mode> = {LISL, LIST, HISL, HIST} Default: LISL

  • <order> = {MSB, LSB} Default: MSB

  • <bits> = {7,..} Default: 8

  • <speed> = {1,100000000} Default: 50000000

  • <data> = {XXX,... | #HXX,... | #QXXX,... | #BXXXXXXXX,... } Array of data separated comma

    • XXX = Dec format

    • #HXX = Hex format

    • #QXXX = Oct format

    • #BXXXXXXXX = Bin format

SCPI

API

DESCRIPTION

SPI:INIT
Example:
SPI:INIT

rp_SPI_Init

Initializes the API for working with SPI.

SPI:INIT:DEV <path>
Example:
SPI:INIT:DEV "/dev/spidev1.0"

rp_SPI_InitDev

Initializes the API for working with SPI. <path> - Path to the SPI device.
On some boards, it may be different from the standard: /dev/spidev1.0
SPI:RELEASE
Example:
SPI:RELEASE

rp_SPI_Release

Releases all used resources.

SPI:SETtings:DEF
Example:
SPI:SET:DEF

rp_SPI_SetDefault

Sets the settings for SPI to default values.

SPI:SETtings:SET
Example:
SPI:SET:SET

rp_SPI_SetSettings

Sets the specified settings for SPI.

SPI:SETtings:GET
Example:
SPI:SET:GET

rp_SPI_GetSettings

Gets the specified SPI settings.

SPI:SETtings:MODE <mode>
Example:
SPI:SET:MODE LIST


rp_SPI_SetMode

Sets the mode for SPI.
- LISL = Low idle level, Sample on leading edge
- LIST = Low idle level, Sample on trailing edge
- HISL = High idle level, Sample on leading edge
- HIST = High idle level, Sample on trailing edge
SPI:SETtings:MODE? > <mode>
Example:
SPI:SET:MODE? > LIST

rp_SPI_GetMode

Gets the specified mode for SPI.

SPI:SETtings:SPEED <speed>
Example:
SPI:SET:SPEED 1000000

rp_SPI_SetSpeed

Sets the speed of the SPI connection.

SPI:SETings:SPEED? > <speed>
Example:
SPI:SET:SPEED? > 1000000

rp_SPI_GetSpeed

Gets the speed of the SPI connection.

SPI:SETtings:WORD <bits>
Example:
SPI:SET:WORD 8

rp_SPI_SetWord

Specifies the length of the word in bits. Must be greater than or equal to 7.

SPI:SETtings:WORD? > <bits>
Example:
SPI:SET:WORD? > 8

rp_SPI_GetWord

Returns the length of a word.

SPI:MSG:CREATE <n>
Example:
SPI:MSG:CREATE 1

rp_SPI_CreateMessage

Creates a message queue for SPI. Once created, they need to be initialized.
<n> - The number of messages in the queue.
The message queue can operate within a single CS state switch.
SPI:MSG:DEL
Example:
SPI:MSG:DEL

rp_SPI_DestoryMessage

Deletes all messages and data buffers allocated for them.

SPI:MSG:SIZE? > <n>
Example:
SPI:MSG:SIZE? > 1

rp_SPI_GetMessageLen

Returns the length of the message queue.

SPI:MSG<n>:TX<m> <data>
SPI:MSG<n>:TX<m>:CS <data>
Example:
SPI:MSG0:TX4 1,2,3,4
SPI:MSG1:TX3:CS 2,3,4
rp_SPI_SetTX
rp_SPI_SetTXCS
Sets data for the write buffer for the specified message.
CS - Toggles CS state after sending/receiving this message.
<n> - index of message 0 <= n < msg queue size.
<m> - TX buffer length.
SPI:MSG<n>:TX<m>:RX <data>
SPI:MSG<n>:TX<m>:RX:CS <data>
Example:
SPI:MSG0:TX4:RX 1,2,3,4
SPI:MSG1:TX3:RX:CS 2,3,4
rp_SPI_SetTXRX
rp_SPI_SetTXRXCS
Sets data for the read and write buffers for the specified message.
CS - Toggles CS state after sending/receiving this message.
<n> - index of message 0 <= n < msg queue size.
<m> - TX buffer length.
The read buffer is also created with the same length and initialized with zeros.
SPI:MSG<n>:RX<m>
SPI:MSG<n>:RX<m>:CS
Example:
SPI:MSG0:RX4
SPI:MSG1:RX5:CS
rp_SPI_SetRX
rp_SPI_SetRXCS
Initializes a buffer for reading the specified message.
CS - Toggles CS state after receiving message.
<n> - index of message 0 <= n < msg queue size.
<m> - RX buffer length.
SPI:MSG<n>:RX? > <data>
Example:
SPI:MSG1:RX? > {2,4,5}

rp_SPI_GetRXBuffer

Returns a read buffer for the specified message.

SPI:MSG<n>:TX? > <data>
Example:
SPI:MSG1:TX? > {2,4,5}

rp_SPI_GetTXBuffer

Returns the write buffer for the specified message.

SPI:MSG<n>:CS? > ON|OFF
Example:
SPI:MSG1:CS? > ON

rp_SPI_GetCSChangeState

Returns the setting for CS mode for the specified message.

SPI:PASS
Example:
SPI:PASS

rp_SPI_Pass

Sends the prepared messages to the SPI device.

2.3.1.3.10. I2C

Parameter options:

  • <mode>  = {OFF, ON} Default: OFF

  • <value> = {XXX | #HXX | #QXXX | #BXXXXXXXX}

  • <data>  = {XXX,... | #HXX,... | #QXXX,... | #BXXXXXXXX,... } Array of data separated comma

    • XXX = Dec format

    • #HXX = Hex format

    • #QXXX = Oct format

    • #BXXXXXXXX = Bin format

SCPI

API

DESCRIPTION

I2C:DEV<addr> <path>
Example:
I2C:DEV80 "/dev/i2c-0"

rp_I2C_InitDevice

Initialises settings for I2C. <path> - Path to the I2C device
<addr> - Device address on the I2C bus in dec format.
I2C:DEV? > <addr>
Example:
I2C:DEV? > 80

rp_I2C_getDevAddress

Returns the current address of the device.

I2C:FMODE <mode>
Example:
I2C:FMODE ON

rp_I2C_setForceMode

Enables forced bus operation even if the device is in use.

I2C:FMODE? > <mode>
Example:
I2C:FMODE? > ON

rp_I2C_getForceMode

Gets the current forced mode setting.

I2C:Smbus:Read<reg> > <value>
Example:
I2C:S:R2 > 0

rp_I2C_SMBUS_Read

Reads 8 bit data from the specified register using
the SMBUS protocol.
<reg> - Register address in dec format.
I2C:Smbus:Read<reg>:Word > <value>
Example:
I2C:S:R2:W > 0

rp_I2C_SMBUS_ReadWord

Reads 16 bit data from the specified register using
the SMBUS protocol.
<reg> - Register address in dec format.
I2C:Smbus:Read<reg>:Buffer<size> >
<data>
Example:
I2C:S:R2:B2 > {0,1}

rp_I2C_SMBUS_ReadBuffer

Reads buffer data from the specified register using
the SMBUS protocol.
<reg> - Register address in dec format.
<size> - Read data size.
I2C:Smbus:Write<reg> <value>

Example:
I2C:S:W2 10

rp_I2C_SMBUS_Write

Writes 8-bit data to the specified register using
the SMBUS protocol.
<reg> - Register address in dec format.
I2C:Smbus:Write<reg>:Word <value>

Example:
I2C:S:W2:W 10

rp_I2C_SMBUS_WriteWord

Writes 16-bit data to the specified register using
the SMBUS protocol.
<reg> - Register address in dec format.
I2C:Smbus:Write<reg>:Buffer<size> <data>

Example:
I2C:S:W2:B2 0,1

rp_I2C_SMBUS_WriteBuffer

Writes buffer data to the specified register using
the SMBUS protocol.
<reg> - Register address in dec format.
<size> - Read data size.
I2C:IOctl:Read:Buffer<size> > <data>
Example:
I2C:IO:R:B2 > {0,1}

rp_I2C_IOCTL_ReadBuffer

Reads data from the I2C device through IOCTL.
<size> - Read data size.

I2C:IOctl:Write:Buffer<size> <data>
Example:
I2C:IO:W:B2  {0,1}

rp_I2C_IOCTL_WriteBuffer

Writes data to the I2C device via IOCTL.
<size> - Read data size.

Note

SMBUS is a standardised protocol for communicating with I2C devices. Information about this protocol can be found in this link: SMBUS specifcations. IOCTL writes and reads data directly from I2C.

2.3.1.3.11. Specific LEDs

Parameter options:

  • <mode> = {OFF, ON} Default: ON

SCPI

API

DESCRIPTION

LED:MMC <mode>
Example:
LED:MMC OFF

rp_SetLEDMMCState

Turns the yellow LED on or off (responsible for indicating the read memory card).

LED:MMC? > <mode>
Example:
LED:MMC? > ON

rp_GetLEDMMCState

Gets the state of the MMC indicator.

LED:HB <mode>
Example:
LED:HB OFF

rp_SetLEDHeartBeatState

Turns the red LED on or off (responsible for indicating board activity).

LED:HB? > <mode>
Example:
LED:HB? > ON

rp_GetLEDHeartBeatState

Gets the state of the HeartBeat indicator.

LED:ETH <mode>
Example:
LED:ETH OFF

rp_SetLEDEthState

Turns the LED indicators on the network card on or off.

LED:ETH? > <mode>
Example:
LED:ETH? > ON

rp_GetLEDEthState

Gets the state of the Ethernet indicators.

2.3.1.4. Examples

In the list below you will find examples of remote control and C algorithms. These examples cover all basic Red Pitaya functionalities, such as:

  • signal generation

  • signal acquisition

  • digital I/O control

  • communication protocols

You can edit and change them according to your needs and develop customized programs and routines.

Additional examples: Add a button to control LED